Mapping Multiple Insect Outbreaks across Large Regions Annually Using Landsat Time Series Data
نویسندگان
چکیده
منابع مشابه
Soil Clay Content Mapping Using a Time Series of Landsat TM Data in Semi-Arid Lands
Clay content (fraction < 2 μm) is one of the most important soil properties. It controls soil hydraulic properties like wilting point, field capacity and saturated hydraulic conductivity, which in turn control the various fluxes of water in the unsaturated zone. In our study site, the Kairouan plain in central Tunisia, existing soil maps are neither exhaustive nor sufficiently precise for water...
متن کاملObject-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series
Greenhouse mapping through remote sensing has received extensive attention over the last decades. In this article, the innovative goal relies on mapping greenhouses through the combined use of very high resolution satellite data (WorldView-2) and Landsat 8 Operational Land Imager (OLI) time series within a context of an object-based image analysis (OBIA) and decision tree classification. Thus, ...
متن کاملNear-Real-Time Monitoring of Insect Defoliation Using Landsat Time Series
Introduced insects and pathogens impact millions of acres of forested land in the United States each year, and large-scale monitoring efforts are essential for tracking the spread of outbreaks and quantifying the extent of damage. However, monitoring the impacts of defoliating insects presents a significant challenge due to the ephemeral nature of defoliation events. Using the 2016 gypsy moth (...
متن کاملDeclouding Time Series of Landsat Data
Novel schemes based on multiresolution transforms were introduced to pre-process long time series of Landsat data. Particularly, removal of clouds and their shadows was tackled. We applied the product of wavelet scales to generate binary masks of corrupted observations, the robust smoother-cleaner wavelets to remove outliers in the data, and the wavelet shrinkage to estimate new values. Cloud c...
متن کاملDetection of Outbreaks from Time Series Data Using Wavelet Transform
In this paper, we developed a new approach to detection of disease outbreaks based on wavelet transform. It is capable of dealing with two problems found in real-world time series data, namely, negative singularity and long-term trends, which may degrade the performance of current approaches to outbreak detection. To test this approach, we introduced artificail disease outbreaks and negative si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2020
ISSN: 2072-4292
DOI: 10.3390/rs12101655